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a b s t r a c t

Experiments were conducted in a cold model circulating fluidized bed having riser cross-sectional area of
100 mm � 100 mm, height of 4.8 m, bed temperature of 75 �C and superficial velocity of 8 m s�1. Local
sand having average diameter of 231 lm was used as bed material. The experiments were conducted
for three tube configurations: membrane tube, membrane tube with a longitudinal fin at the tube crest
and membrane tube with two longitudinal fins at 45� on both sides of the tube crest. The results show
that membrane tubes with one and two longitudinal fins have higher heat transfer than membrane tubes
and the heat is mainly transferred in the combination portion of tube and membrane fins. In addition, the
membrane tube has the highest heat transfer coefficient.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction particles on and the lower view factor of the fin leads to lower heat
Circulating fluidized bed (CFB) boilers are widely used for
power generation due to their low pollution, fuel flexibility and
high combustion efficiency. However, the design methodology is
not as well established as that of pulverized coal fired boilers [1].

CFB boilers operate in the fast fluidized bed regime where the
majority of particles at the bulk bed temperature move upwards
through the core of the furnace and flow downwards along the
membrane water wall tubes of the CFB boiler in the form of cluster
of particles or strands. The heated particles slide along the surface
of the wall for a certain distance after that they separate from the
wall and mix with the bulk of the bed. As they slide along the wall,
they transfer their heat to the wall. This causes their temperatures
and the heat transfer rate to decrease as the traveling distance of
the particles increases. This mode of heat transfer plays the most
important role in heat transfer from the bed to water wall tubes
and is called particle convection [2,3]. According to the heat trans-
fer mechanism, the heat transfer can be increased if there are more
renewal particles which come in contact with the wall. At elevated
temperature, radiation contributes to the heat transfer both to the
covered and uncovered surfaces by the particles. By visual observa-
tions on the wall of a 12 MWth CFB boiler, Golriz [4] reported that
there was higher particle concentration over the fins than the tube
crests. In addition, they traveled on the fins longer than those trav-
eling on the tube crests. A combination of longer residence time of
ll rights reserved.
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transfer coefficients on the fin.
To maintain the combustion temperature at an optimum level

in a CFB boiler, it is required for the water tube walls of a CFB fur-
nace to absorb a certain fraction of the heat input to the furnace. In
addition, high capacity CFB boilers having high heat inputs are re-
quired to have additional heating surfaces either across the furnace
or external heat exchangers. However, the both options are not
only costly but also risk to erosion.

To fill this gap in research knowledge related to heat transfer in
the CFB loop, a series of research on heat transfer to the wing walls
[5,6], to the standpipes [7], to the cavity type inertial separators [8]
and to the ceiling of the riser of a CFB boiler [9] was conducted. In
this present work, a study of enhancement of heat absorption by
the membrane water wall is conducted.

Longitudinal fins welded on membrane water wall tubes may
provide additional heat absorption in CFB furnace. In addition, this
concept has the following advantages: it may help reduce erosion
of the water wall because the fins may reduce particle momentum;
it increases the area moment of inertia of the tube; it is simple to
manufacture and less costly; and it may be added to the water wall
of an existing boiler [10].

As reviewed by Basu and Nag [2], a number of investigators
have investigated heat transfer in CFB risers. Some of these are pre-
sented in Table 1. Reddy and Nag [12] reported that the addition of
a longitudinal fin to membrane tube at the tube crest leads to an
increase in the heat absorption from bed to wall but results in a
drop in the heat transfer coefficient. An increase in heat absorption
up to 45% is found in the work of Basu and Cheng [10]. Since the
fact that fin efficiency increases with a decrease in fin height, for
the same surface area, heat transfer might be improved by adding
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Nomenclature

A area (m2)
CFB circulating fluidized bed
c specific heat capacity (J kg�1 �C�1)
d test tube diameter, diameter (m and lm for particle

size)
EL elevation
G circulating rate (kg m�2 s�1)
g gravity acceleration (m s�2)
H test tube length, height (m)
h heat transfer coefficient (W m�2 �C�1)
hA heat transfer capacity (W �C�1)
I bed inventory (kg)
ID inside diameter (m)
k thermal conductivity (W m�1 �C�1)
L longitudinal fin height (m)
_m mass flow rate (kg s�1)

m fin constant (m�1)
p pressure (Pa)
P convection perimeter (m)
Q heat transfer rate (W)
r tube radius (m)
T temperature, temperature distribution along fin height

(�C)
U superficial velocity (m s�1)
x distance from fin base (m)

Subscripts
2lf longitudinal fin at 45� of tube crest
amb ambient
avg based on average
b bed
c based on cross-section
i inner tube
in inlet
lf a longitudinal fin at tube crest
mf membrane fin
o fin base, outer tube
out outlet
p particle, based on constant pressure, tube wall
s solid, based on surface
T total
t tube
tip fin tip
t–mf tube and membrane fin portions
w water

Greek symbols
D difference
e voidage (–)
q density, suspension density (kg m�3)
x exposed angle (rad)
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shorter longitudinal fins. However, these fins have to be attached
around the outside tube surface which might restrict the motion
of bed particles on the surface. In addition, a change in fin orienta-
tion on the tube might have an affect on the motion of the particles
on its surface.

As far as authors are concerned, information on the effect of lon-
gitudinal fin orientation on the heat transfer behavior in mem-
brane water wall tubes is lacking. Hence, the aims of this work
are to investigate the heat transfer and heat transfer coefficient
of membrane water wall tubes, the membrane water wall with a
longitudinal fin at the tube crest and with two longitudinal fins
at 45� on both sides of the tube crest. In addition, the heat transfer
and heat transfer coefficient of the longitudinal fin portion and the
combination of the tube and membrane fins portion are also
investigated.
2. Experimental setup

The cold model circulation fluidized bed equipment used in this
work has a riser height of 4.8 m and 100 mm � 100 mm in cross-
section as shown in Fig. 1(a). It is fabricated from carbon steel plate
having a thickness of 2.3 mm. The fluidization air is supplied by a
high pressure blower through the distributor plate located at the
bottom of the riser. The distributor plate is made from 6 mm thick-
ness steel plate. It has holes of diameter 3 mm with 10 mm square
pitch. This arrangement corresponds to 7.07% opening fraction.
Local sand having bulk density of 1515 kg m�3, particle density
(qs) of 2774 kg m�3 and average diameter (dp) of 231l m is used
as bed material. The entrained particles leaving the riser are
captured in a cyclone located at the top of the return pipe. The
upper portion of the return pipe is made of clear plastic having a
diameter of 55 mm. At the bottom of this part, there is a butterfly
valve used as a particle measuring valve. The solid circulation rate
is measured by closing this valve and measuring the volume of sol-
ids collected in this pipe portion for a certain time. In order to have
enough bed material to feed the riser when this valve is shut off,
there is a storage column made of clear plastic pipe having a diam-
eter of 80 mm located under this valve. Under this part, there is a
butterfly valve used as a particle control valve. The bed material
from the return pipe is fed into the riser via a pipe having a diam-
eter of 55 mm. Compressed air from a compressor is used as aera-
tion air and supplied to the system at below the material control
valve. The aeration air pressure is adjusted by using a pressure reg-
ulator. Backflow is controlled by adjusting the aeration pressure
and the particle control valve.

The air flow rate in the riser is adjusted by using a bypass valve
and its velocity is measured by pitot tube. Before the supplied air
enters the distributor plate, it is heated by an electric heater having
a capacity of 3 kW. Thirteen wall static pressure taps are provided
along the height of the riser and they are connected to water
manometers.

The test section has a length of 1200 mm and is installed at
1800 mm above the distributor plate. Inside this section there
are three types of test tubes. Their arrangement is shown in
Fig. 2(a). The tubes are made from carbon steel having outside
diameter and thickness of 31.8 mm and 6.5 mm, respectively.
The fins have a thickness of 3 mm. In all cases, the test tube has
the length of 1000 mm and the height of the membrane fin is
14 mm. T-type thermocouples are spot welded to the temperature
measuring points. Details of the test section and details of the test
tubes are shown in Fig. 2(b) and Table 2, respectively.

Water at room temperature is pumped from a storage tank and
supplied to the test tubes. The water flow rate of each test tube can
be adjusted by individual flow control valve and the flow rate can
be read from individual water rotameters. At the entrance and exit
of the test tubes, thermocouples are installed for measuring the tem-
perature of those points. The water flow diagram is shown in Fig. 1(b).

In order to ensure that the test tubes were under the same
hydrodynamic conditions, the test section was arranged in such a
way that the tube being tested was on the same side of the riser
as shown in Fig. 1.



Table 1
Details of experimental studies on heat transfer in the laboratory CFB units

Authors Test section Longitudinal fin Test conditions

d (mm) H (mm) Lmf (mm) No. of fin Llf (mm) Fin orient. CFB riser dp (lm) qs (kg m�3) q (kg m�3) U (m s�1) Gs (kg m�2 s�1)

Lockhart et al. [11] 19 914 4.75 na. na. na. 152 mm dia. � 9.3 m, cold model 200 2650 25–91 7 33–68
32 914 8 na. na. na.

Reddy and Nag [12] 34 304 5 na. na. na. 102 mm � 102 mm � 5 m, Tb = 380–650 �C 260 2350 <20
34 304 5 1 5 tube crest

Basu and Cheng [10] 50.8 3740 12.7 1 20 tube crest 1600 mm � 680 mm � 9 m, Tb = 722–921 �C 2500 3.42–8.67 4.3–6.5
Molerus [13] 28 500 na. na. na. 190 mm dia � 10 m, Tb = 20–880 �C 194 10–80
Wu et al. [14] 12.7 1220 na. na. na. 152 mm dia. � 9.3 m, Tb = 340–880 �C 188–356 3066 5–70 6.6–9.5
Furchi et al. [15] 72 mm dia. water jackets na. na. na. 72 mm dia. � 6 m, Tb < 250 �C 269 5.8–12.8 <80
Basu and Ngo [16] 34 304 5 na. na. na. 102 mm � 102 mm � 5 m, Tb = 380–650 �C 260 2350 1
Sekthira et al. [17] 10 800 na. na. na. 880 mm dia. � 1.72 m, Tb = 200–350 �C 300, 500 2500 8–160 5–12
Luan et al. [18] 21.3 1626 6.4 na. na. na. 152 mm � 152 mm � 7.3 m, Tb = 800–900 �C 286 2596 10–70 7
Nag et al. [19] 100 mm dia. � 300 mm with

electric heater
4,8 23 100 mm dia. � 5.15 m, cold model, Tb = 66.5–91.59 �C 310 2350 18–76 5.6–11.4

Present work 31.8 1000 14 See Table 2 100 mm � 100 mm � 4.8 m, cold model, Tb = 39.7–74.9 �C 231 2447 25–75 8 22–110
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Fig. 1. Schematic diagram of the cold model circulating fluidized bed (all dimensions are in millimeters).
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3. Theoretical analysis

3.1. Hydrodynamics

The cross-sectional average voidage (e) in a riser is determined
by following equation:
e ¼ 1� Dp
qsgDH

ð1Þ

where Dp is the pressure difference across the two taps, DH is the
distance between the two wall pressure taps, qs is solid particle
density and g is gravity acceleration.
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The cross-sectional average suspension density (q) can be
determined as follows:

q ¼ ð1� eÞqs ð2Þ
3.2. Heat transfer

Total heat transfer rate through the test tubes (QT) can be calcu-
lated from the increase in water energy as

Q T ¼ _mwcpðTw;out � Tw;inÞ ð3Þ
where _mw, cp, Tw,out and Tw,in are water mass flow rate, specific heat
capacity of water, outlet and inlet water temperatures, respectively.

Alternatively, the total heat transfer can be calculated from the
summation of the heat conduction in membrane fins (Qmf), heat
conduction across the tube wall (Qp) and heat conduction in the
longitudinal fin (Qlf) [18].

QT ¼ Q mf þ Q p þ Q lf ð4Þ

Assuming one-dimensional heat conduction and neglecting heat
loss at the fin tip, the temperature distribution (T) along the longi-
tudinal fin height is [20]:



Table 2
Details of the test tubes

Type Description Longitudinal fin

No. of fins Height
(mm)

Orientation from
the tube crest (�)

A Membrane tube
B Membrane tube with a longitudinal

fin at the tube crest
1 14 0

C Membrane tube with two longitudinal
fins at both sides of the tube crest

2 7 45
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T � Tb

To;lf � Tb
¼ cosh mlfðLlf � xÞ

cosh mlf Llf
ð5Þ

where, Tb and To,lf are bed and fin base temperatures, respectively, x
is the distance from fin base, Llf is the longitudinal fin height and mlf

is the fin constant which is defined as

m2
lf ¼

hlf P
Ack

ð6Þ

where, hlf, Ac and k are average heat transfer coefficients of the lon-
gitudinal fin, cross-sectional area and thermal conductivity of the
fin. P is the convection perimeter.

Heat transfer rate in the longitudinal fin (Qlf) can be determined
as following:

Q lf ¼ ðTb � To;lf ÞAckmlf tanhðmlf LlfÞ ð7Þ

The nomenclature of a membrane tube with a longitudinal fin is
shown in Fig. 3. By knowing the fin base temperature (To,lf) and
the temperature at the fin tip (Ttip,lf), the longitudinal fin constant
can be determined according to Eq. (5) as follows:

mlf ¼
1
Llf

cosh�1 To;lf � Tb

T tip;lf � Tb

� �
ð8Þ

For a portion of tube having exposed angle of x, inside radius of ri,
outside radius of ro and length of H, heat transfer through the tube
thickness can be determined as follows:

Q p ¼ xHk
Tp;o � Tp;i

lnðro=riÞ
ð9Þ
Insulation

CFB furnace 
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,o mfT ,tip mfT  
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mfL  

mft  
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Fig. 3. Nomenclature of a membrane water wall tube with longitudinal fin.
The average heat transfer coefficient of bed to water wall (havg) is
determined as

havg ¼
Q T

AsðTb � TsÞ
ð10Þ

where As is the total surface area which is the summation of the
area of membrane fin (As,mf), tube (As,t) and longitudinal fin portion
(As,lf).

As ¼ As;mf þ As;t þ As;lf ð11Þ

Ts is the weighted-average exposed surface temperature of the tube
and fins which can be estimated as [18]

Ts ¼
As;mf To;mf þ Ttip;mf

� ��
2þ As;tTo;p þ As;lf To;lf þ T tip;lf

� ��
2

As;mf þ As;t þ As;lf
ð12Þ

For the heat transfer coefficient of the combination of tube and
membrane fins portion (ht�mf)

ht-mf ¼
Q T � Q lf

AsðTb � TsÞ
ð13Þ

where Qlf is the heat transfer from the longitudinal fin portion
which can be determined by using Eq. (7). In this case

As ¼ As;mf þ As;t ð14Þ

and

Ts ¼
As;mf To;mf þ Ttip;mf

� ��
2þ As;tTo;p

As;mf þ As;t
ð15Þ

The average heat transfer coefficient of the longitudinal fin (hlf) can
be determined from Eqs. (6) and (8) as

hlf ¼
1
Llf

cosh�1 To;lf � Tb

Ttip;lf � Tb

� �� �2 Ack
P

ð16Þ
4. Experimental uncertainty

A digital data logger was used as a temperature indicator. The
thermocouples and logger were calibrated using an oil bath and
a standard thermometer. The logger and the thermocouples to-
gether have an accuracy of ±0.1 �C. Rotameters having an accuracy
of 1% were used to measure the water mass flow rate through the
test tubes.

The root of the sum of the square (RSS) [21] was used to esti-
mate the experimental uncertainty. Based on Eqs. (3), (10) and
(16), the uncertainties in measured heat transfer rate, average heat
transfer coefficient and heat transfer coefficient of the longitudinal
fin were 5%, 12% and 8%, respectively.

An additional test was performed to estimate heat loss through
the test section. The test was performed by supplying only air at
75 �C with velocity of 8 m s�1 through the riser. The heat loss
was estimated by balancing the decrease in energy of air across
the test section and total heat gained by water in the test tubes.
The heat loss was found to be 3%.

5. Results and discussion

Experiments on the three test tubes were conducted under the
same hydrodynamic conditions. The experimental conditions are
shown in Table 3.

Based on the increase in water energy as in Eq. (3), the obtained
average heat transfer coefficient (havg) of the three test tubes as a
function of cross-sectional average suspension density (q) are
shown in Figs. 4–6. Particle convection is the dominating mode
of heat transfer between the fluidized bed and the tube walls. In
all cases, it is found that the heat transfer coefficients increase as
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Table 3
Experimental conditions

Mean particle size, dp 231 lm
Particle density, qs 2774 kg m�3

Particle bulk density 1515 kg m�3

Superficial velocity, U 8 m s�1

Suspension density, q 25–75 kg m�3

Bed inventory, I 15 kg
Solid circulation rate, Gs 22–110 kg m�2 s�1

Bed temperature, Tb 70–75 �C

1558 A. Chinsuwan, A. Dutta / International Journal of Heat and Mass Transfer 52 (2009) 1552–1560
the suspension density increases. This is because there are more
particles coming into contact with the tube wall when the suspen-
sion density increases.

The heat transfer coefficients of the tube types A and B are
shown in Figs. 4 and 5, respectively. It is seen that their trends
are the same as those which others have published in the litera-
ture. The difference in heat transfer coefficient is due to the differ-
ence in bed temperature and tube length.

The comparison of heat transfer coefficient of the three types of
test tube is shown in Fig. 6. It is found that test tube type A has the
highest heat transfer coefficient. The tube type C tends to have
higher average heat transfer coefficient than the tube type B.

The proposed heat transfer coefficients agree with those which
are calculated by using the total heat transfer according to Eq. (4).
The comparison is shown in Fig. 7.
With an increase in surface area of 33.36% for tube type B and C
compared with that of type A, it is found that the heat transfer ratio
of the tube type B to tube type A (QT,lf/QT,mf) and tube type C to tube
A (QT,2lf/QT,mf) are about 1.25 as shown in Fig. 8. However, the ratio
of the average heat transfer coefficient of the tube type B to type A
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(havg,lf/havg,mf) and tube type C to tube A (havg,2lf/havg,mf) are about
0.75. The trend for an increase in heat transfer rate and a decrease
in heat transfer coefficient when adding fins on the heat transfer
surface in a circulating fluidized bed was also found in the work
of Reddy and Nag [12] and Nag et al. [19]. This is because the lon-
gitudinal fins obstruct solid particles which come into contact on
the tube’s surface which results in decrease in the heat transfer
coefficients. The heat transfer rate of the longitudinal finned mem-
brane tubes, tube types B and C, is more than that of the membrane
tube because they have more average heat capacity, a product of
average heat transfer coefficient and exposed surface area (hA).
Membrane fins enhance heat transfer from the bed to fluid inside
water wall tubes by collecting heat and transferring it into insu-
lated portions of the tube. This heat transfer rate increases as the
tube thickness, fin thickness, fin width and bed side heat transfer
coefficient increases [22]. Since there is a decrease in the heat
transfer coefficients of the longitudinal finned membrane tubes,
the heat transfer from the insulated portion of the tubes is reduced
and the increase in heat transfer rate of the tube types B and C is
mainly from the exposed portion of the tubes.

As shown in Fig. 9, Qt�mf,lf/QT,lf and Qt�mf,2lf /QT,2lf are the ratio of
the heat transfer in the combination of tube and membrane fins
portion to total heat transfer of the type B and C tubes, respec-
tively. It is found that heat is mainly transferred through the com-
bination of the tube and membrane fins portion. Heat transfer
through that portion of the tube for types B and C are 65% and
70%, respectively.

Heat transfer coefficient of the longitudinal fin portion of tubes
type B and C (hlf and h2lf), heat transfer coefficient of the combina-
tion of tube and membrane fins portion of tubes type B and C
(ht�mf,lf and ht�mf,2lf) and the average heat transfer coefficient of
membrane tube (havg,mf) are shown in Fig. 10. It is found that hlf

is higher than h2lf. This indicates that for the tubes having the same
configuration as the tubes type B and C, there is more renewal of
particles at the tube crest than at 45� from the tube crest. Hence,
the heat transfer coefficient of the combination of the tube and
membrane fins portion will decrease dramatically if there is any
restriction of renewal of particles at the tube crest. Because of this,
the heat transfer coefficient of the tube type A (havg,mf) and the tube
type B (ht�mf,fl) are highest and lowest, respectively. In the case of
the tube type C, there is enough space between the two longitudi-
nal fins to ease the particle motion on the tube crest. As a result,
ht�mf,2fl is more than ht�mf,fl and it is more sensitive to suspension
density than ht�mf,fl. When comparing the heat transfer coefficient
between the longitudinal fin portion and the combination of tube
and membrane fins portion of the same tube type, it is found that
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Fig. 9. Heat transfer ratio of the combination of the tube and membrane fins
portion to total heat transfer of the type B and C tubes.
hlf > ht�mf,lf and h2lf > ht�mf,2lf. This indicates that there is more
renewal of sand particles at the longitudinal fin portion than that
at the combination of tube and membrane fins portion.

6. Conclusions

The effect of longitudinal fin orientation on heat transfer in
membrane water wall tube was investigated by comparing the
heat transfer behavior among the three tube configurations: mem-
brane tube, membrane tube with a longitudinal fin at the tube
crest and membrane tube with two longitudinal fins at 45� on both
side of the tube crest. In all cases, tube and membrane fins have the
same configuration. For the last two, the height of the longitudinal
fins of the tube having two fins is one-half of that of the tube hav-
ing a longitudinal fin.

Heat transfer in the membrane water wall of a CFB boiler can be
improved by adding longitudinal fin on the tube surface. For the
tubes having the same configuration and dimensions as the test
tubes, there is no significant effect from the fin orientation on heat
transfer rate. However, the fin orientation has a strong effect on the
heat transfer coefficient of the longitudinal fin portion and the
combination of tube and membrane fins portion. Heat transfer
coefficient of the longitudinal fin at the tube crest is higher than
that at 45� from the tube crest. The membrane tube with two lon-
gitudinal fins at 45� on both sides of the tube crest has higher heat
transfer coefficient of the combination of tube and membrane fins
than that of the tube with a longitudinal fin at the tube crest. The
membrane tube has highest heat transfer coefficient. The tube with
two longitudinal fins tends to have higher heat transfer coefficient
than the tube with a longitudinal fin. In addition, the results show
that heat is mainly transferred through the combined portion of
tube and membrane fins.

As the fin height has an influence on heat transfer from horizontal
tubes in a fluidized bed [23], the effect of the longitudinal fin orien-
tation should be investigated for different fin heights in further work.
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